Advanced methods for social network analysis

Advanced methods for social network analysis

Course requirements

This course assumes basic statistical knowledge such as regression and familiarity with R together with a basic knowledge of social network analysis as given in the introductory course.

To book a place in the course, please use our booking form. You can review details on fees here. The course fee is for a single course, and includes 28 hours of face-to-face teaching over 5 days, and lunch on 4 days. Once your booking has been processed please visit the e-store to pay by credit or debit card.

Course Summary

We begin by looking at ERGMs (Exponential Random Graph Models) using the software package PNET and also statnet in R. This allows us to answer questions such as: Are there more triads in my network than I would expect by chance? And more complex questions involving attributes such as am I more likely to be friends with someone who is a similar age to me? The course moves on to longitudinal data using the R version of the SIENA package. This looks at network formation over time and is an actor based model that allows for endogenous network effects (such as transitivity and popularity) as well actor attributes (such as homophily) to be included in the model. Finally the course will cover the use of permutation tests and some advanced descriptive methods which will depend on the participants interests.

The course will

  1. Introduce the theory and terminology of the Exponential Random Graph Model (ERGM) and show how it can be applied to network data using PNET and statnet and discuss issues such as convergence, degeneracy and goodness of fit.
  2. Extend the ERGM to deal with attribute data and show how the model can be used in practice.
  3. Describe the actor based model implemented in RSiena
  4. Show how the model can be extended by using a variety of practical examples with an emphasis on interpretation of the output.
  5. Describe the use of permutation tests for network analysis.

Preliminary reading

  • Robins, G L, Pattison, P E, Kalish, Y, Lusher, D (2007) An introduction to exponential random graph (p * ) models for social networks Social Networks. 29:173-191.
  • Snijders, T.A.B., Doreian, P. (2010). Introduction to the special issue on network dynamics. Social Networks, 32, 1-3.
  • Snijders, T.A.B., Steglich, C.E.G., and van de Bunt, G.G. (2010). Introduction to actor-based models for network dynamics. Social Networks, 32, 44-60.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s